Skip to main content

Air-to-Ground (A2G) Network for Emergency Communications

Air-to-Ground communications have been talked for a while. I first covered it back in 2015 while writing about a trial between Deutsche Telekom (DT), Airbus and Alcatel-Lucent (now part of Nokia). In fact Alcatel-Lucent (ALU) was a pioneer in this area which can be seen from this old whitepaper here. In fact this paper is translated as it is in the new Nokia library here.

It wasn't at all surprising that yesterday, EE, part of BT Group, announced that it has signed an agreement with Nokia to build an industry-first nationwide 4G LTE Air-to-Ground network for the emergency services across Great Britain.


According to the press release:

The pioneering new 4G network will enable uninterrupted high speed broadband coverage for emergency service personnel working above ground from 500 feet up to 10,000 feet.

As part of the agreement, EE and Nokia will enable mission-critical network coverage for emergency services that will be the world’s first use case utilising commercial 4G LTE broadband services in its field.

The 4G LTE Air-to-Ground network will provide seamless connectivity between ground operations and air, connecting people, sensors, aircraft and helicopters with the highest security and reliability. Over 300,000 emergency service personnel will benefit from the Emergency Services Network designed to facilitate uninterrupted coverage allowing emergency services the capability to communicate with their airborne colleagues.

As part of the agreement, EE will provide the active network equipment for a full reference facility, and an initial seven site trial network. Following the trial, EE will deploy the network equipment in over 80 Home Office acquired cell sites across the UK. Nokia will provide design support, network equipment, installation and commissioning services to ensure timely delivery of the Emergency Services Network (ESN) 4G LTE Air-to-Ground network.

The first trial of the 4G LTE Air-to-Ground network will take place over the coming months in North Wales and London, enabling EE, Nokia and the Home Office to test the hardware capability over different terrain along with the hardware deployment process, the software capability, and the operational support of the complete Air-to-Ground service, prior to the roll out of the final Air-to-Ground network.

Nokia has been working with BT/EE for ESN for a while as I detailed in Telecom Infra Blog here.

Another thing worth reminding from my earlier post is that there are various acronyms being used for these type of communications but the one most commonly used is Direct-Air-to-Ground Communications (DA2GC), Air-to-Ground (A2G) and Ground-to-Air (G2A).


While explaining European Aviation Network (EAN) in this post, I looked at how satellite connectivity in the planes will be complemented by A2G communications in the future. It is already happening for commercial airlines in Europe today and the A2G network for public safety uses similar approach. For anyone interested in learning more about EAN masts and antennas, can check out this video.
Another whitepaper from Nokia details how LTE Air-to-Ground connectivity can provide broadband connectivity to continental aircraft flights. It's available here.

Finally, here is a video from Nokia on this topic.


Related Posts:

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose Study Gro

NTT Docomo's Disaster Countermeasures to Keep People Connected

Recently I blogged about Disaster Roaming in 3GPP Release-17. While this will take time to be implemented worldwide, it is already available in Japan, maybe not in the 3GPP standardised way. Similarly, back in 2011, I blogged about Earthquake and Tsunami Warning service (ETWS) from NTT Docomo's Journal, it was two days before the  2011 TĹŤhoku earthquake and tsunami hit. Japan is no stranger to earthquakes, typhoons, and other natural disasters, which can have a devastating effect on infrastructure. To ensure that the mobile networks keep functioning, operators work extremely hard to ensure people remain connected one way or another. NTT Docomo has released a video detailing the countermeasures to keep everyone connected in case of emergencies. The following detail is provided with the video: DOCOMO's network is no exception, and our services could get cut off by a base station power outage, disconnected fiber-optic cable, or other malfunctions. DOCOMO established the three pr