While 5G rollout is gaining momentum, 6G is the new shiny object nowadays. Operators may still be struggling with finances and the ability to increase ARPU or revenues through 5G but that has not dampened the vendors and researchers appetite to start talking about 6G.
Alliance for Telecommunications Industry Solutions (ATIS), North American Organizational Partner for 3GPP and a leading technology and solutions development organization recently announced Next G Alliance to Advance North American Leadership in 6G. It has several operators and vendors as founding partners.
In addition, 6G Symposium was held just last week bringing together vendors, researchers and though leaders in the mobile telecom networks to discuss the next evolution of mobile technology.
While there is a lot of activity going on everywhere,
6G Flagship has been taking leadership role with the publication of many different whitepapers and even a
magazine now. One of the whitepapers that has been published is about
Broadband Connectivity in 6G.
The Executive Summary is as follows:
This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1~Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h. To achieve these goals, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures.
We believe that several categories of enablers at the infrastructure, spectrum, and protocol/algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric and scalable cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to THz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latencies, higher reliability, and reduced complexity.
Different options will be needed to optimally support different use cases. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning-based optimization, coded caching, and broadcasting. Finally, the three levels of enablers must be utilized not only to deliver better broadband services in urban areas, but full-coverage broadband connectivity must also be one of the key outcomes of 6G.
The paper makes an interesting reading and the PDF is available
here. Another version of this paper is available on arXiv
here.
Related Posts:
Comments
Post a Comment