Skip to main content

HAPSMobile and Loon Deliver 4G from Stratosphere

Last year, I wrote about how HAPSMobile is bringing connectivity from the sky for underserved, unserved areas as well as emergencies. Earlier this year we saw HAPSMobile and Loon Partner for Stratosphere-Based LTE Communications Solution. So it shouldn't come as a surprise that HAPSMobile and Loon have announced "First in the World to Deliver LTE Connectivity from a Fixed-Wing Autonomous Aircraft in the Stratosphere"


Selected extract of the press release as follows: 

SoftBank Corp.’s HAPSMobile Inc. (“HAPSMobile”) and Alphabet’s Loon LLC (“Loon”) today announced they successfully tested their jointly developed communications payload in the stratosphere on HAPSMobile’s “Sunglider,” a solar-powered unmanned aircraft system (UAS). Taking place during Sunglider’s first stratospheric test flight at Spaceport America (SpA) in New Mexico on September 21 MT, the test marked the world’s first successful delivery of LTE connectivity from a fixed-wing High Altitude Platform Station (HAPS) autonomous aircraft in the stratosphere.

The stratosphere-ready payload used in the test flight was a first-of-its-kind for a fixed-wing, autonomous aircraft-based HAPS to deliver LTE connectivity. Using MIMO technology, the payload enabled LTE connectivity to be delivered continuously for approximately 15 hours during Sunglider’s test flight. The payload performed as planned in the demanding conditions of the stratosphere, where wind speeds reached greater than 58 knots (approximately 30 meters per second) and temperatures were as low as -73 degrees Celsius.

During the test, the communications payload enabled a video call between Loon members and AeroVironment, Inc. (“AeroVironment”) team members with smartphones at SpA and HAPSMobile team members in Tokyo. The test system was composed of a service link from Sunglider using the 700MHz spectrum band (LTE Band28) and a feeder link between the aircraft and a ground gateway using millimeter wave spectrum*. Since the radio waves transmitted and received by Sunglider operate on the same frequencies as existing smartphones and devices, Loon and AeroVironment members in SpA were able to use regular smartphones to participate in the video call. During the test flight, smooth operations and connection speeds enabled high-definition, low-latency video calls.

* The service link used a 5MHz band of the 700MHz spectrum band for this test. In addition to an outdoor environment, the video call test was successful indoors.


Vint Cerf, recognized as one of the “Fathers of the Internet” and VP and Chief Internet Evangelist, Google, LLC, and Jun Murai—known as the “Father of the Internet in Japan” and Professor at Keio University’s Faculty of Environment and Information Studies, and HAPSMobile External Director—also joined the video call and discussed HAPS’ significance for the future of the Internet.

During the test flight, HAPSMobile also conducted basic measurements of stratosphere-to-ground radio wave propagation data that will be used toward future contributions to the ITU Radiocommunication Sector (ITU-R) with a view to international standardization. With the valuable data and learnings that the teams collected during this test, HAPSMobile and Loon will be collectively working with ITU, 3GPP, regulators and telcos to further the already in progress work on HAPS. The test also provided insight into how HAPS could be used in disasters and alongside other lifesaving technologies.


In a recent Mobile World Live webinar, HAPSMobile laid out their roadmap which includes commercialization in 2023. This test flight is just the first step towards that. 

HAPSMobile & Loon are not the only one attempting to do the transmission of 4G/5G from space. Earlier this year, Rakuten and Vodafone have become the lead investors in AST & Science's SpaceMobile which aims to do the same.

Finally, here is a movie produced by HAPSMobile to explain their concept

Related post from HAPSMobile on Mobile World Live here.

Related Posts:

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...