Skip to main content

SuperCell, a Wide-Area Coverage Solution for Increasing Mobile Connectivity in Rural Communities

In this blog we have looked at lots of different solutions to improve rural and remove connectivity (see related posts at the end of this post). Now Facebook Connectivity has announced that they have been working on prototyping the SuperCell, a wide-area coverage solution for increasing mobile connectivity in rural communities. After working with telecom industry partners to conduct several trials and data analyses, they are ready to share what they have learned.

From the Facebook Engineering blog post

SuperCell is a large-area coverage solution that leverages towers up to 250 meters high and high-gain, narrow-sectored antennas to increase mobile data coverage range and capacity.  

Our field measurements found that a 36-sector SuperCell base station mounted on a 250-meter tower can serve a geographical coverage area up to 65 times larger than a standard three-sector rural macro base station on a 30-meter tower in the same topography. In an analysis of uncovered regions in Nigeria, using publicly available population density data coupled with insight from Facebook Connectivity’s Advanced Network Planning tools, we determined that a single SuperCell could replace 15 to 25 traditional macrocells, or hundreds of small cells, to provide coverage to the same number of people; and that a network of SuperCells could be deployed at more than 33 percent lower overall total cost of ownership (TCO) compared to a network of macrocells. 

Left: The flat rural terrain around the site in Quad City, Illinois. Right: The 300-meter guyed broadcast tower used for the coverage experiments.

Considering the coverage gap, topography, and infrastructure needs in sub-Saharan Africa, we believe this is a region where SuperCell has potential for high impact.

Why do we need it?

In many rural areas around the world, mobile is the only option for internet connectivity. But many rural communities still lack mobile internet access because the macrocell technologies that are traditionally used to deliver mobile connectivity to urban areas are simply not economically viable for remote communities in lower-middle-income countries. SuperCell is designed to be a cost-effective, reliable alternative to traditional macrocell sites and to better address the need for connectivity in rural areas.

How does SuperCell compare to alternative solutions?

We don’t believe there’s a silver bullet for connecting the world. The telecom industry has developed several innovative technologies and business models to address the coverage gap in rural areas. These range from inexpensive small cell solutions that can provide coverage to small settlements (a 0.5- to 1-kilometer radius) with satellite backhaul; large-area coverage cellular solutions using tethered aerostats; and large-area coverage solutions using stratospheric balloons. There are also technologies aimed at making rural backhaul more cost-effective, including modular microwave backhaul solutions in unlicensed bands, low Earth orbit (LEO) satellite constellations to provide ubiquitous coverage, and medium Earth orbit (MEO) constellations.

The table below provides a brief summary of some of the pros and cons of various solutions, including SuperCell.

Should be noted from the above table that the following cons are listed for SuperCell

  • Sites must be planned well; moving the site after construction is not possible
  • Potentially a single point of failure for a large region
  • High power consumption, but OpEx is simpler due to a single site versus multiple sites

Detailed post is available on the Facebook Engineering site here and also on Facebook Connectivity site here. A research paper is available here as well as on Arxiv here.

Related Posts:

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose Study Gro

NTT Docomo's Disaster Countermeasures to Keep People Connected

Recently I blogged about Disaster Roaming in 3GPP Release-17. While this will take time to be implemented worldwide, it is already available in Japan, maybe not in the 3GPP standardised way. Similarly, back in 2011, I blogged about Earthquake and Tsunami Warning service (ETWS) from NTT Docomo's Journal, it was two days before the  2011 Tōhoku earthquake and tsunami hit. Japan is no stranger to earthquakes, typhoons, and other natural disasters, which can have a devastating effect on infrastructure. To ensure that the mobile networks keep functioning, operators work extremely hard to ensure people remain connected one way or another. NTT Docomo has released a video detailing the countermeasures to keep everyone connected in case of emergencies. The following detail is provided with the video: DOCOMO's network is no exception, and our services could get cut off by a base station power outage, disconnected fiber-optic cable, or other malfunctions. DOCOMO established the three pr