Skip to main content

Verizon 4G/5G to help Deliver Retail Products with Connected Drones

At CES 2021, Skyward, A Verizon company, and UPS Flight Forward, announced collaborative efforts to deliver retail products with drones connected to Verizon 4G LTE, as well as 5G testing and integration for delivery. The companies aim to deliver retail products via connected drones at The Villages in Florida. 

The press release said:

“We will need the ability to manage and support multiple drones, flying simultaneously, dispatched from a centralized location, operating in a secure and safe environment. To do this at scale, alongside Verizon and Skyward, we’ll need the power of 5G,” said Carol B. Tomé, CEO of UPS.

“We’re just beginning to see how the power of 5G Ultra Wideband will transform the way businesses operate,” said Rima Qureshi, Chief Strategy Officer at Verizon. “By partnering with UPS and other innovative companies, we can learn from each other’s expertise and collaborate to create solutions that help move the world forward.”

In 2020, Verizon, UPS Flight Forward, and Skyward started testing 4G LTE in delivery drones to demonstrate cellular reliability and performance at altitude.

“The low latency of 5G and edge compute is ideal for monitoring air traffic in and out of a busy logistics hub, especially those using mixed fleets of autonomous vehicles like drones, trucks, and planes,” said Mariah Scott, Skyward President.  “This year, we’ll be taking the collaboration with UPS further by testing 5G Ultra Wideband integrations to connect the sky.”

UPS has operated more than 3,800 successful drone delivery flights since the creation of UPS Flight Forward, its drone delivery company, certified by the Federal Aviation Administration in 2019. But in 2020, drone delivery emerged as much more than rapid delivery of essential healthcare items — during the global pandemic it provided high-risk seniors a rapid and contactless delivery option to remain healthy at home.

“Using Verizon’s 5G and Skyward, we’ll be able to transform the delivery experience - more personal, more on-demand and with the same safety, efficiency, and reliability our customers trust today.” said Bala Ganesh, Vice President, Advanced Technology Group at UPS.

Here is a video from the announcement

Related Posts:

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose Study Gro

NTT Docomo's Disaster Countermeasures to Keep People Connected

Recently I blogged about Disaster Roaming in 3GPP Release-17. While this will take time to be implemented worldwide, it is already available in Japan, maybe not in the 3GPP standardised way. Similarly, back in 2011, I blogged about Earthquake and Tsunami Warning service (ETWS) from NTT Docomo's Journal, it was two days before the  2011 Tōhoku earthquake and tsunami hit. Japan is no stranger to earthquakes, typhoons, and other natural disasters, which can have a devastating effect on infrastructure. To ensure that the mobile networks keep functioning, operators work extremely hard to ensure people remain connected one way or another. NTT Docomo has released a video detailing the countermeasures to keep everyone connected in case of emergencies. The following detail is provided with the video: DOCOMO's network is no exception, and our services could get cut off by a base station power outage, disconnected fiber-optic cable, or other malfunctions. DOCOMO established the three pr