Skip to main content

NTT Docomo and Airbus Demonstrate Zephyr HAPS Wireless Broadband Connectivity

NTT Docomo and Airbus have demonstrated the ability to use Airbus's solar-powered Zephyr High Altitude Platform Station (HAPS) to deliver future wireless broadband connectivity. The trial took place in the United States in August, when the Zephyr S aircraft undertook approx. 18-day stratospheric flights to test various capabilities. We have covered many of the topics here, see related blog posts link at the bottom.

A press release said:

Carrying an onboard radio transmitter, the Zephyr S provided an agile datalink during a stratospheric flight to simulate future direct-to-device connectivity. Test data was captured at different altitudes and at different times of day and night, focusing on assessing how connectivity is affected in the stratosphere by factors including weather conditions, different elevation angles and aircraft flight patterns.

Tests included various bandwidths to simulate direct-to-device service from the HAPS to end users using low, nominal and high throughput. The demonstration confirmed the viability and versatility of the 2GHz spectrum for HAPS-based services and also the use of a narrow (450MHz) band to provide connectivity in a range of up to 140km.

The measurement and analysis of the propagation of radio waves transmitted from Zephyr demonstrated the feasibility of stratospheric communications to devices such as smartphones. Based on the results of this experiment, Airbus and NTT DOCOMO aims to provide communication services to mountainous areas, remote islands, and maritime areas where radio waves are difficult to reach.

"DOCOMO believes that HAPS will be a promising solution for coverage expansion in 5G evolution and 6G," said Takehiro Nakamura, General Manager of DOCOMO's 6G-IOWN Promotion Department. "In this measurement experiment, we were able to demonstrate the effectiveness of HAPS, especially for direct communication to smartphones, through long-term propagation measurements using actual HAPS equipment. Based on these results, we would like to further study the practical application of HAPS in 5G evolution and 6G with Airbus."

As part of efforts to further advance 5G and prepare for 6G, "coverage expansion" to expand communication networks to any location, including air and sea, is being studied worldwide. To achieve this, non-terrestrial network (NTN) technology is expected to be used. In addition to coverage of the air and sea, stratospheric HAPS networking will be useful for disaster preparedness and many industrial use cases, for example, to increase communication capacity in densely populated areas such as event venues, and remotely controlling heavy equipment at construction sites.

The test data will be used to inform future LTE direct-to-device services that are expected to be provided via the Airbus Zephyr HAPS solution.

A recent article (Oct 2021) in NTT Docomo Technical Journal on 'Research on NTN Technology for 5G evolution & 6G' has details on some of the things NTT Docomo is trying to achieve with NTN solutions. It's available here.

I especially liked this comparison of HAPS-mounted stations.

(click on image to enlarge)

Related Posts

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. ...

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose ...

NTT Docomo's Disaster Countermeasures to Keep People Connected

Recently I blogged about Disaster Roaming in 3GPP Release-17. While this will take time to be implemented worldwide, it is already available in Japan, maybe not in the 3GPP standardised way. Similarly, back in 2011, I blogged about Earthquake and Tsunami Warning service (ETWS) from NTT Docomo's Journal, it was two days before the  2011 Tōhoku earthquake and tsunami hit. Japan is no stranger to earthquakes, typhoons, and other natural disasters, which can have a devastating effect on infrastructure. To ensure that the mobile networks keep functioning, operators work extremely hard to ensure people remain connected one way or another. NTT Docomo has released a video detailing the countermeasures to keep everyone connected in case of emergencies. The following detail is provided with the video: DOCOMO's network is no exception, and our services could get cut off by a base station power outage, disconnected fiber-optic cable, or other malfunctions. DOCOMO established the three p...