Skip to main content

Bluetooth Low Energy Audio

CW (Cambridge Wireless) is the leading international community for companies involved in the research, development and application of wireless and mobile, internet, semiconductor and software technologies. The Connected Devices Special Interest Group (SIG) within CW, focuses on applications, systems and underlying technologies of wireless communication where the end device is a machine or other device that’s not a handset.

The group's scope encompasses the concepts of Machine to Machine (M2M) communication and the Internet of Things from the perspectives of key applications, systems design and technology. This includes wide-area networking (WAN), standard cellular communications, satellite systems and broadband, and where required local-area networking (LAN), Bluetooth, Near-Field Communications (NFC), Ultra Wide-Band (UWB), Wi-Fi, Zigbee, and other less well-known standards. Proprietary radio systems are also considered along with the data centre and back-office systems required to deliver the actual end-to-end service that customers and service providers require.

Late last year, the group held two virtual events focussed on Bluetooth Low Energy (BLE) Audio: 

  1. An Introduction to Bluetooth Low Energy Audio (link)
  2. Bluetooth Low Energy Audio – the Deep Dive (link)

CW members can access the presentations and video of the event from the resources part in the event links above. 

Embedded below is the video from the introduction event. It provides a fantastic overview of what exactly is meant by Bluetooth Low Energy Audio.

Related Posts:

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...