Skip to main content

Tutorial Session on Current Trends and Key Challenges of Satellite communications

The 2024 Global Forum on Connecting the World from the Skies, held on November 25-26, brought together policymakers, industry leaders, and technical experts to discuss the evolving landscape of Non-Terrestrial Networks (NTNs). Hosted by the International Telecommunication Union (ITU) and Saudi Arabia’s Communications, Space & Technology Commission (CST), the event highlighted NTNs' critical role in shaping the future of global connectivity.

The conference featured a rich lineup of keynote speeches, panel discussions, tutorial sessions, and an award ceremony. One standout session on Day 1 was the tutorial "Satellite Communications: Current Trends and Key Challenges," delivered by Professor Riccardo De Gaudenzi of the University of Parma.

This session explored the vital role satellite networks play in global communication, from video broadcasting to bridging connectivity gaps in underserved regions. Traditionally focused on broadcasting and professional applications, satellite networks are now increasingly essential for broadband and mobile services.

The video below reviews the evolution of satellite systems, key market drivers, frequency bands, system architectures, and emerging technologies. It covers innovations in:

  • Non-geostationary narrowband constellations like Iridium and Starlink
  • Geostationary mobile communication systems such as Inmarsat and Thuraya
  • High-throughput satellites, including Viasat and Eutelsat
  • Broadband mega-constellations like OneWeb and Amazon Kuiper

Video Highlights:

  1. Advancements in Satellite Technology: The video showcases innovations in satellite design, launch capabilities, and new technologies improving efficiency and expanding global coverage.
  2. Impact on Global Communications: It emphasizes how these advancements enhance connectivity in remote areas, support disaster response efforts, and drive the growth of the Internet of Things (IoT) and emerging technologies.
  3. Industry Challenges: The session also addresses critical industry hurdles, including regulatory complexities, the need for international collaboration, and technical challenges related to maintaining and upgrading satellite infrastructure.

Note: The presentation slides have not been shared.

This tutorial offers a comprehensive look into the future of satellite communications, providing valuable insights into how NTNs are revolutionizing global connectivity.

Related Posts

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. ...

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose ...

NTT Docomo's Disaster Countermeasures to Keep People Connected

Recently I blogged about Disaster Roaming in 3GPP Release-17. While this will take time to be implemented worldwide, it is already available in Japan, maybe not in the 3GPP standardised way. Similarly, back in 2011, I blogged about Earthquake and Tsunami Warning service (ETWS) from NTT Docomo's Journal, it was two days before the  2011 Tōhoku earthquake and tsunami hit. Japan is no stranger to earthquakes, typhoons, and other natural disasters, which can have a devastating effect on infrastructure. To ensure that the mobile networks keep functioning, operators work extremely hard to ensure people remain connected one way or another. NTT Docomo has released a video detailing the countermeasures to keep everyone connected in case of emergencies. The following detail is provided with the video: DOCOMO's network is no exception, and our services could get cut off by a base station power outage, disconnected fiber-optic cable, or other malfunctions. DOCOMO established the three p...